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The problem of the steady-state acoustic oscillation is examined in a fluid the surface 
of which is covered by an infinitely thin elastic body (a membrane, a plate, a shell) . 
Properties cf the cover are given by means of a differential operator of arbitrary order 
with constant coefficients. A solution of the problem is formulated for arbitrary sources 
(point or distributed) which are located both in the fluid and on the cover. 

Notation 

P- pressure, j’ - extraneous body force in the fluid, F - extraneous surface force, 

P- density of fluid, PO - density of covering material, p - surface density of cover- 
age, &’ - Young’s modulus, U - Poisson’s modulus, y- membrane tension, ‘2h- 

thickness of coverage, Lu - circular frequency, k - wave number in the fluid, 
The time factor .seiot is omitted everywhere . 

1, Formulation of the problem. Exrmplrc. Problem related to the 

influence of thin elastic objects (membranes, plates, shells) on acoustic processes in a 
fluid are at present of urgent interest. Mathematical boundary value problems which 
arise in the investigation of such effects as a rule have a specific feature : differential 
operators which are involved in the definition of boundary conditions have a higher order 
than the order of the equation itself. 

Let the lower half-plane y > 0 be filled with a compressible fluid. Processes in this 
fluid will be described in terms of pressure P. For y> 0 we shall assume that the 
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inhomogeneous Helmholtz equation is satisfied 

A P -)- k2P = div 

We shall seek a solution of this equation for the 
f (1.1) 
following boundary conditions : 

+.,,(-&.)P= 

(1.2) 

Extraneous effects (sources) div f, j, (Y=o) and F,,. ..Fr are assumed to be specified 
functions ; we shall assume that they are localized in some finite volume. In other words, 

div f (z, Y), f,,(~, 0) and F, (x) ,...,Fr(r) are classical or generalized functions of their 
own arguments. These functions are equal to zero outside a certain finite domain (so- 
called functions with a finite carrier). We can consider that the components of vector 

J@(x, y) are also specified. It is however not necessary to impose limitations on the 
domain in which they are different from zero. The quantity k is assumed to be a com- 
plex number with positive real and imaginary parts (i. e. the fluid medium turns out to 

be absorbing). The case of ositive real values k should be considered as a result of a 
passage to the limit of Imk 

g 
* + 0 (principle of limiting absorption). Operators 

nl B (-t a /ax) and 4 8 (-ta lax) are polynomials of argument -&a/ax : coefficients 
of these polynomials do not depend on X. In the following some limitations will be 

placed on algebraic properties of polynomials. 

The solution will be sought in the class of functions which together with their deriva- 
tives of arbitrary order show exponential decay with respect to x and y with increasing 

distance from the domain occupied by sources. 
The fact that derivatives with respect to y of higher order than first do not enter into 

boundary condition (1.2) , does not imply a limitation of generality . Derivatives with 

respect to g of second and higher order can be eliminated from (1.2) by means of the 

Helmholtz equation (1.1). 
We shall present the most prevalent examples of boundary condition (1.2). 

1. The surface of fluid is free (the case of absence of cover) 

P = F, (1.3) 

2. The surface of the fluid is rigidly fixed 

aPlay = f!, (1.4) 

3. “Impedance” boundary condition 

aPi@/ -I ~1’ = f!, + EF, (1.5) 

As was noted in [l], this condition arises especially when the fluid is separated from 
a completely rigid body by a thin elastic layer of thickness 2h. In this case it turns 

out that 
a = 2h/J09 

(1 t-G)(l-223) 
/<(I - 5) 

4. A membrane is located on the surface of the fluid 

5. An elastic plate separates two identical fluids (occupying the lower y > 0 and 
upper y c 0 half-plane, respectively). The plate is assumed to be capable of bending 
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as well as symmetrical motions. Separating the symmetrical and antisymmetrical part 
of functions which describe the processes in the system, we can break up the general 

problem into two independent ones each of which is formed for the lower half-plane . 
We have P” (x, Y) = l/2 P (5, Y) f p lx:, - Y)l 

Is”(% Y) = ‘iz I!, (% Y) * Ix (2, - Y)lt f,+ (XT Y) = I/* [fu (‘c? Y) T f!,(6- WI1 

&‘W = liz IF,,,(4 rt: F2,r (41, FJ,* (4 = ‘1, PI,?, (4 i FQ/ (41 

Here ii; represents the force acting on the lower (upper) surface of the plate . 

Body forces are not taken into consideration. 
By examining the symmetrical part we can arrive at the boundary condition 

G aF3+ 
I-6 ax 

For the antisymme~ical part we have, correspondingly, 

jf.71 

aF - 
lzh8 (-i -;;)4-pohwq f,-+F;+h$- (1.8) 

6. The plate, as before, is capable of bending as well as symmetrical motions and 

is located on the surface of the iluid. The boundary condition here has a quite cumber- 
some form 

If by virtue of some considerations (see &2-J 1 we can neglect the symmetrical (anti- 
symmetrical) motion of the plate, the problem simplifies and the boundary relationship 
takes a form analogous to (1.8) or (1.7). respectively, and differs from it only in doub- 
ling of some coefficients. 

At present time problems for moving covers are also examined [3& In this case deri- 
vatives of uneven order would have participated in operators m,( -$a /ax) and 

m,(-Wax). 

2, Field of 8ourcCt locrtsd in the fluid, The general problem (1, l), 
(1. ‘2) can be broken up into two independent problems assuming inhomogeneous Helm- 
ho&z equation (1.1) and homogeneous boundary condition in the first problem 
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AP + k*P = div f (11 > 0), LP -= 0 (2/ = 0) (2.1) 

and the converse in the second problem, At first let us consider the first problem and 

let us construct its solution with the aid of Green’s function. Green’s function G(X. y, 

X0, go ) represents a field of a point source of the 6 -function type located in the depth 

of the fluid (field of a pulsating cylinder). We have 

AC + k2C = 6 (z - rO, ?I - yJ (11 > O), LC = 0 (?I = 0) (2.2) 

We shall look for function G in the form of a sum of two terms, the first of which (Go) 

represents the field of a point source for a boundless fluid medium and the second (G1 ) 

the reflected field which is due to boundary condition (2.2) for y = 0 

G = G” + G, (2.3) 

Both terms are written in the form of an expansion in plane waves 
m 

- 
ii\(x--x,)+i I/La--h’ j t/- -,jo 1 dh 

(2.4) 

The branch of the radical is fixed by the requirement Irn l/k2 - h2 > 0 for Imh = 0, 

The function g(i) is sought on the basis of the boundary condition (2.2) for E/ = 0 . 
We have 

g(Vl(V + 1 
e-iAr,+i~i, T/P3 

2 ‘r/k’- ha 
I”(h) ei’.“clh=O 

1 
(a..?, 

1 (A,) = i v/k2 - h2 ml (I.) + m2 (A.), l”(h) = - i l/k? - h2 ml (A) + m2 (h) (2.f‘) 

Now restriction 1 is placed on boundary operator L . The algebraic function R(h) 

does not have real roots, Solving (2. 5) with respect to g(x) we obtain 
1 I”(‘) 

@)=-_2 I/m I(h)e 
--iC+x,+i!i, I/F3 (2.7) 

From this it follows in turn 
(2.8) 

03 

G=-!- 
4ni_T&,(hj s 

,iE C-x0) 1 l (~1 e i I II--?I0 I Vkz-A8 _ lo(h) ,i(v+vo) Vks-hgj dh 

We recall that quantity k" is considered complex, In case of Im k= 0 in problems 

described in Section 1, real roots 4 (A ) may occur (they correspond to so-called surface 

waves). The integral for G becomes in this case divergent and its regularization is 

achieved by means of introduction into k of the positive imaginary part with subsequent 

realization of passage to the limit of Im k -) + 0 . As a result of such a procedure, 

expressions arise in which integration along the real axis is replaced by an integration 

over a contour close to the real axis. This contour lies in the complex plane and by- 

passes in a special manner singular points of the expression under the integral (see for 

example 143 ) . 

It is not difficult to become convinced that the constructed function G satisfies con- 

ditions at infinity . In fact the expressionDG (where D is an arbitrary operator of dif- 

ferentiation with respect to X and y ) splits into two terms of the following form : 
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r (a) ,ihS+i VP-_),‘Y d)i 

Jf/pl x5 1 (A) 
(2.9) 

Y 2 0 , and r( h ) is some polynomial 
of arguments 1 and @??. As singular 

points of the expression under the integral, 
points of bifurcation A = f k and poles in roots 

R(X ) appear. The number of these singular 

points is finite, in addition to this and in ac- 

cordance with the assumption they ate not 
located on the real axis. Therefore we can 
find such an a > 0 in the region h2, defined 

Fig, 1 
by the inequality 

IlmhI<u+atRe~/ 

(it is left without hatching in Fig. l), that there will be no singular points. Further, by 
virtue of the fact that Im JfkQ”>O on the real axis while lim Im vn = 
=*a3 forh--‘Ltm, this Q. can be selected in such a manger that everywhere in G we 

will have Im l/k- > a. Finally, the expression r (h)/ v/k- 1 (A) has an alge- 

braic character and does not have singularities in the closed region R,. Therefore the 

following uniform estimate must be applicable in G 

(A,r=const>O, p=Reh) 

For the sake of definiteness we shall now assume that x > 0 . The contour of integra- 

tion in (2. 9) is displaced upward in such a manner that it will coincide with rays r: 
and I?‘: . The integral with respect to r: is estimated as follows : 

The same expression also estimates the integral with respect to r$ . 
In a similar manner the cases x > 0 and x = 0 can be examined. By the same token 

it can be considered as proved that the constructed function G (X, y. X0 , &, > satisfies 
the conditions at infinity and consequently is the Green’s function of our problem , 

We note that restriction 1 has in some respects a necessary character. Namely: no 
regularization of diverging integral (2.11) in the case of real roots A( A) (for Im k > 0) 
satisfies stated conditions at infinity. (Various regularizations would differ in the quan- 
tity expressed by deduction of the function under the integral in the root 4 (A) , but this 

does not give the decay for Y = const at I--) f O3 ) , 
Th$ constructed Green’s function possesses certain symmetry properties with respect 

to the point of observation (X , 1/) and the point (X0 , &, ) in which the source is loca- 
ted. In physics such properties are referred to as a reciprocity principle. Comparing 

derivatives of G with respect to x and X0 in (2. 8), we have the following for the arbi- 
trary operator of differentiation D (-5 a /ax) : 
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It is evident that with respect to variables (Xo , go ) Green’s function must satisfy 

Equations 

( 
To, :/u) = 6 (z - .%, ?I - Y/n) (?/o > ‘1) (2.12) 

a 
L --a;, a2/, ( J G (z, r,, .ro, f/“) --= ‘1 (70 = 0) (2.13) 

0 
If the following condition is satisfied 

L a;- , 3; ‘i = 
i IJ - -(;; 9 t ! (2.14) 

as is the case in examples of Section 1, then Green’s function is simply symmetrical 

G (T, Y, %l Yo) = G (zo, Yo, 2, Y) 

and therefore the point of observation and the point where the source is located can be 

interchanged. In case when derivatives of odd order with respect to x are present in L 
(case of moving covers), it is necessary in transposition of the points of observation and 

the source to change the velocity of the cover to the reverse, 
We note that function G1 represents some analog of the field of imaginary represen- 

tation of the source which is located in the point (36 , - go ) . 
Knowledge of Green’s function permits to find the field of an arbitrary system of 

sources located in the fluid. Solution of problem (2.1) is expressed through G by means 
of convolution operation 

p (I, Y) - \j G ( x, ?I, 20, YO) div f (x0, YO) (lx0 +/o (2.15) 

This operation has meaning because according to assumption the region B(this is the 

designation of the carrier of function divf ) is finite (see [5] ) . 

3. Field of 11ourcc8 located on the aurfacc. Now we shall turn to 

the second part of our general problem I 

AP + k’P = 0 (Y>Q (Y = 0) (3.1) 

Its solution is most easily achieved by means of Green’s “boundary” function 

H(X, I/, x0 ) which satisfies conditions 

AH + k=H = 0 (Y > Oh LH = 6 (cc - x0) 

It is not difficult to obtain the following expression for fi: 
(Y = 0) (3.2) 

co 

H(x, Y. xo) - 2&- 
I s L I (n) &x-x,)+iT/FF,, & 

-m 

(3.3) 

Solution of problem (3.1) is expressed through the following convolution 

Here [a, b] is some interval outside of which functions /Jr, 0), F, (x), F 2(x), . ..F[(z) 

are identically equal to zero. 
Apparently there must exist a connection between functions G and H. We shall prove 

below that H(x, Y, x0 ) with one additional restriction on operator L can be expressed 

through G (x, y, x0 t y. ) in a local manner (by means of differentiation operation 
and passage to the limit for y. --) + 0) and write the solution of the general equation in 

terms of one function G . 
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We let go in (2. 8) go to zero 
00 

Applying operator L we obtain (sett;; J/ = 0) 

(3.5) 

It is now evident that the solution of the problem 

AP+k2P=6 (?/>O), (?I := 0) (X.7) 

can be written by means of G with the aid of convolution in the following manner: 
b 

P (2, !I) = = G (2, !I, 20, 0) f!, (x0, 0) da 
s 

(3.8) 

CL 

This result becomes quite obvious if in a comparison with (2.15) it is taken into 
account that the jump of the normal component of any vector is its surface divergence, 

Now we shall apply the Green’s function G a certain linear differential operator fl 

(3.9) 

Here n, are some polynomials of their own argument and coefficients of these poly- 
nomials (as before with Rl, and g, ) are assumed to be independent of coordinates . 

Carrying out the differentiation and setting go = 0 , we obtain 

( a a 
N - 2& 7 aye -) li,o=o G (X? Y> x0, Yo) = 

(3.10) 

Now we apply operator L to NG and put E/ = 0 

L &, &) I,=/(- &- 7 &)~uo=oW, Y,XO> ~a)= ( 
-[~l(-i~)n2(-i7&-)-~n1(-i-$)51(-i &)]6(x-x0) (3.11) 

We apply now restriction 3.1 on operator L . 
Polynomials m I( 1) and m 2 (A ) do not have common roots. In other words, the 

largest common denominator of these polynomials is a constant. 
Then, according to a well-known theorem of algebra (see for example [6] ) for any 

m,(X) and m,(X), we can select (by an innumerable multitude of methods) such 
polynomials nl( h) and n,(k) that the following relationship is satisfied 

ml (k) n2 (k) - m2 (3,) ni (h) = i (3.12) 

In advance we shall imply fl to be such an operater that ?2l and n, satisfy the rela- 
tionship (3.12) . Then 

From this it follows that 

! a 
11 (x, :I, xo) = N - -axx , l.o=o G (x9 2/v x0, I/o) (3.14) 
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and this proves the assertion about the possibility of local representation of H through 
r il; this indicates that an arbitrary surface force applied to any point of the cover can be 

replaced in its action by some point source of multiple character located in the fluid in 

the immediate vicinity of the cover. This result is of definite interest because the action 

of various surface forces may not express themselves one through the other in a local 

manner. Thus in example 5, Section 1 (Expression (1.7) ) the tangential point force 

F,+ of the h-function type can be replaced in its action only by some distributed normal 

force Fy', and conversely, the normal point force _fl,, rr+ equal to 6 (X-X, ) can be 

replaced only by a distributed tangential force. This is related to the circumstance that 

the solution of Equation 

(3.15) 

with respect to any unknown Fx+ and ij;’ can be realized only by means of nonlocal 

operation, i. e. integration. 

The general solution of the problem formulated in Section 1 can now be written in 

terms of one function G . 

a 
‘a!l, )I (3.16) 
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